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Spectrally Accurate Contour Dynamics
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Woe present an exponentially accurate boundary integral method
for calculating the equilibria and dynamics of piece-wise constant
distributions of potential vorticity. The method represents cantours
of potential vorticity as a spectral sum and solves the Biot-Savart
equation for the velocity by spectrally evaluating a desingularized
contour integral. We use the technique in both an initial-value code
and a Newton continuation method, Our methods are tested by
comparing the numerical solutions with known analytic resulis, and
it is shown that for the same amount of computational work our
spectral methods are mare accurate than other contour dynamics

methods currently in use.  © 1998 Avagrmic Fross, Inc.

L. INTRODUCTION

Boundary integral methods are often used to solve for the
motion of two-dimensional. nondissipative flows with inter-
fuces | 1-6]. When the interface represents g jump in potential
vorticity, the magnitude of the discontinuity at the interface is
constant in time, and the velocity of the fluid is completely
specified by the location of the interface and by the boundary
conditions. The motions of the vorticity interface and the
method of calculation are collectively known as “‘contour dy-
namics™’ [ 7] (henceforth referred 1o as CD). The carliest iimple-
mentations of CD approximated the locations of the interfaces
with Lagrangian marker particles connected by low-order poly-
nomials and used a variety of methods for computing the con-
tour integral along the interface to obtain the velocity. Second-
and third-order accurate methods have been reviewed by Zou
cr al. | 8] and Dritschel {9]. Baker and Shelly [10, 1] developed
a sixth-order methaod that uses Hermite polynomials for interpo-
lation and quintic splines to caleulate derivatives. Relaxation
methods that converge to steady equilibria, rather than solve
the initial-value problen, use modifications of these CD Meth-
ods FLT20 13 with an exception heing the work ol Pullin and
Jacobs |S] and Pullin er «f. 114} where speetral methads are
used to represent a steady interluce. Puilin ef af. used their CD
method to examine the stability of vortex layers, but they were
only able to study perturbations of moderate amplitude due to
difficulties with convergence.

In this paper we show that for the same amount of computa-
tional work needed by the second- and third-order accurate CD
methods, there are spectral CD algorithms that are exponentiatly

accurate and robust for both initial-value problems and steady-
state equilibrium finders. In Section 2 we present the equations
for potential vorticity dynamics and formulate the CD of piece-
wise upiform distributions of potential vorticity. In Section 3 a
spectral representation for the focations of contours is described,
and its errors are analyzed. Section 4 describes our quadrature
miethod for the contour and discusses the accuracy of our veloc-
ity calculation. In Section 5, we iest the performance of our
CD initiai-value code. A Newton pseudo-arclength continuation
method for finding steady solutions is described in Section 6.
and its rate ol convergence and accuracy are analyzed. In Sec-
lion 7 we discuss an inverse probieni: given the boundary of
a patch of unilorm potentiat vorticity find a zonal velocity and/
or bottom topography so that the flow is in equilibrium. Our
conclusions and a discussion of implications for future work
are presented in Section 8.

2. FORMULATION OF THE PROBLEM

In the quasi-geostrophic limit, the equations that govern a
one-layer, constant density, rapidly rotating fow with a free
surface can be written in terms of the potential vorticity
glx, v 1)

2 _Dq _ A
[mﬂv V)]q_Dr 0. (\

In this Yimit the velocity v(x, y, 1) is two dimensional and
divergence-free,

v.=0 (2)

V-v=10. (3)

The potential vorticity [15] in terms of the stream function s
is writien

glx, y, 1y = Vijlx, y, 1) ~ ﬂi:—’) + B, ¥, #

where L, is the Rossby deformation radius (a measure of the
depth of the layer) and B(x, y) is the generalized B-plane term
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which has contributions due to both the variations in the Coriolis
force and the bottom topography of the layer.! The stream
function ¢ is related to the velocity and the vorticity w in the
usual way,

i

v

X Vi (5)

and
w = Vi, 6)

where Z = X X ¥ is the unit vector perpendicular to the two-
dimensional plane. We arbitrarily decompose the potential vor-
ticity into two compoenents defining g(x, ¥, 1) = g + ¢'(x, v,
1), where we require g to be constant in space and time. We
also decompose y(x, y, ) such that ¥(x, y, 1) = #(x, 3) + ¥'(x,
¥, 1, where e,_b is steady and solves the linear, inhomogeneous
Helmholtz equation:

7=V - B0 gy M

2
R

Then ¢'(x, y, 1) is the solution to the homogeneous Helm-
holtz equation

¢y =Vl yn - ()Zgy’ : (8)

and g’ is governed by

d
[; + (v - V)] g =0 (9

We also define v = v + v/, where v and v’ are related to their
respective streamfunctions, ¢ and ', as in (5).

Our motivation for decomposing v, ¢, and ¢ into steady and
time-dependent components is that it allows us to use Green's
functions. Because there is & linear homogeneouns differential
operator that relates ' to ¢', we can use a Green’s function
to calculate i from ¢’ in the standard way [16-18] and thereby
use the generalized Biot—Savart law for finite Lg,

Yoo = [ Gl =Xyt odeay. (0)

where the Green’s function G is defined to be the solution to

' We define g as the local acceleration of gravity, f(x, ¥) as the local Coriolis
force with Jfy as its average vatue, [Hy + h{x, v, 1) — hp(x, ¥)] as the depth of
the layer with H, as its average value, A as the height of the free surface, and
hy as the depth of the bottom topography. Then, 8 = f(x, ¥) — fi + hgfo/Hy.
Ly = VgHylfy and ¢ = gh/f,

S81/115/2-3
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Sx —x') = (w - i) Gilx — x’)) (1n
Ly

and where G satisfies the desired boundary conditions. In this
paper we shall impose the boundary condition that the gradient
of G be zero at infinity so that the velocity goes to zero at
infinity. By taking the gradient of {8), we obtain similar equa-
tions for the velocity:

X Vg= [VI—H v (12)
R

Note that because g is uniform, Vg = ¥g’'. The Green’s function
that relates g to ' is the same as the one that relates Vg to
the velocity:

v(x) = [ Gllx = x)@ X Tayax'dy' (13)

The above area integral reduces to a contour integral when g4’
is piece-wise constant. If g’ consists of n patches of piece-wise
constant potential vorticity, (13) becomes

vix) = — E{ quﬁﬁ G(x ~ x'(s))ds, (14)

where Ag,is the jump in potential vorticity across the /" interface
(by definition of g. g = 0 outside the patches), s is the arc
length along the contour, and ds = (dx'/ds)ds. The sign of
this expression is chosen as follows: The parameterization is
assumed to be counterclockwise for a closed contour, the unit
normal is outward, and Ag is defined to be positive if g is
higher inside a contour than it is outside.

For simplicity in this paper we shall examine one or two
finite area patches of Ag'. For finite Ly, the zeroth-order modi-
fied Bessel function —K(|x — x'|/L¢)/27 is the Green’s function
[16—18], while for infinite L,, G = log(|x — x'[}/2#. Note that
for infinite Lp and V X v equal-to a constant, the equation of
motion (1) reduces to Euler’s equation. The application of the
method to finite domains or periodic boundary conditions can
be accomplished by using the appropriate Green’s function.
For the remainder of the paper we shall describe our methods
in terms of Green’s functions so that applications to other
boundary conditions are clear.

3. REPRESENTATION OF THE BOUNDARY

CD methods consist of three distinct parts: (1) a method of
approximating the location of the contours, (2) a quadrature
for the contour integral, and (3) an algorithm for advecting or
updating the contours. In this section we describe the first part:
how we spectrally represent the boundary. Generally, a closed
contour in two dimensions can be represented as two periodic
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functions of a parameterization 7 that give the coordinates of
the points on the contour: [x(7), y{7)]. Since these two functions
are periodic (and often analytic) our approach is to represent
them spectraliy:

x(1) = Re [ E: X.e" ’] 1%
#=0
and
NIZ—1
y(7) = Re [ > Y,,e"""]. (16)
n=0

The N/2 complex Fourier coefficients, X, and Y,, are related
via discrete Fourier transform to the N points x; = [x({(7), y(7)],
which are equally spaced in 7. We shall pick our parameteriza-
tion 7 to have period 27, and we shall pick the N discrete
points as

n =2 — 1/2)IN,

i=1,2,... N (17
Note that the above definition of the boundary not only defines
a curve that interpolates between the discrete points, but also
is an algorithm for taking derivatives. In contrast, the second-
order methods described by Zou er al. use piece-wise linear
approximations for x(7) and y(7), while Dritschel uses cubic
splines to approximate the boundary.

The accuracy of any representation of a boundary is depen-
dent on how the {7} are physically distributed on the boundary.
Consider a given contour with N discrete points x; placed along
it. Their distribution along the boundary depends on the defini-
tion of 7. For example, for a simple contour about the origin,
one might choose 7= 6, where #1s the azimuthal polar coordi-
nate. Or, 7could be chosen to be proportional to the arc-length
s, or to s modified by a weighting function of the local curvature.
In any case, once T and N are chosen, the discrete points x; =
x(7;) are determined uniquely and by discrete Fourier transform
so are the N/2 complex Fourier coefficients (X, ¥,) used in
(15) and (16). With (15) and (16) our approximation for the
location of the boundary for any continuous value of T is
uniquely determined. To quantify the error and to test for the
rate of convergence of our approximation as a function of N,
we define the error &,(N) 10 be a measure of the difference
between the approximation and exact locations of the boundary
for X discrete values of 7,

7 AN -y I
Zim Ixu(7) x(f,)l] ’ a8)

£(N) = [ u
' S5 %

where 77 = 2m(j — 1/2)/K, N/2 is the number of complex
Fourier modes in (15) and (16}, x,{(7/} is the numerically inter-
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FIG. 1. The error £(N) as a function of the number of discrete points N
on the boundary for an elliptical boundary with the boundary points equally
spaced in 7, where 7is the azimuthal polar coerdinate 8. The errors are plotted
for (@)2:1.(X)5:1, and {(+) 15: 1 ellipses. The value of K used in Eq. (18)
is 2048. Note that the resolution is always limited by roundoff errors of
order 107",

polated boundary point at 7/ using (15) and (16}, and x(7/) is
the exact boundary position at 7;. Note that K > N.

We illustrate our approximation and its error for an elliptical
boundary and for a “‘cat’s-eye’” shaped boundary for various
choices of 7. We choose an ellipse as an example because the
boundary is analytic and because ellipses are exact solutions
(both steady and time-periodic) to Euler’s equation with appro-
priate v. The “‘cat’s-eye’’ shaped boundary is of interest because
it approximates the shape of steady vortices with discontinuous
tangent vectors (see, for example, Fig. 14).

Note that for an ellipse, a truncated spectral representation
with N = 2 could be exact; if we define 7 such that

(x, v) = [a cos(T), b sin{7)], (19)
then only the first two Fourier coefficients in (15) and (16) are
needed, so with proper placement only four points would be
needed to represent the boundary exactly. This is a rather special
circumstance, and in general we will not be able to know the
ideal point distribution a priori.

Figure 1 is a plot of £,(NV) as a function of N for elliptical
boundaries centered at the origin with three different values of
the ellipticity and for the parameterization 7= §, where 8 is the
azimuthal polar coordinate. The figure shows the exponential
convergence of the boundary representation as a function of
N. It also shows that the representation is less accurate for more
elongated ellipses. Figure 2 shows &,(N) for a distribution of
X; that is concentrated at the two points of maximum curvature.
Specifically, the points are equally spaced in 7, where T is
defined 8 = 7 — sin(27)/2 and where the major axes of the
ellipses are aligned along the x-axis. Figure 2 shows the obvious
advantage of having the points x; clustered in regions of high
curvature. Note that a 50:1 ellipse with only 128 points has an
&, less than 1073 for this parameterization. By increasing N to
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FIG. 2. Same as Fig. | but with 7 chosen so that () = 7 — sin(27H/2.
We plot errors for (@) 2:1, (%) 10: 1. and (+) 50: 1 ellipses.

512 even this highly elongated an ellipse can be represented
to within the accuracy of our 107" roundoff error.

We have also examined the errors in representing a boundary
that has a discontinuous tangent vector (i.e., the local radius
of curvature of the boundary goes to zero). This is of interest
because many of our families of calculated steady solutions
[18, 19, 20] have limits in which the tangent vectors are discon-
tinuous, (cf. Fig. 14). The specific boundary that we examine
here is given in polar coordinates by: r = 1/[1 + sin(#)], for
O<@<wand r=1/[1 — sin(H], for 7w < 8 < 2. This boundary
is simply two sections of a parabola connected together. We
use three distributions of points x; which are defined by their
respective parameterizations ™, [ = 1, 2, 3, where 8 = 79,
# = 9 — s§in(2779/2, and 9 = Y — (272 -
sin[279 — sin{279)]/2. All three distributions have equally
spaced points in 7, but they are concentrated at 78, the location
of the discontinuous tangent vector (i.e., at 8 = 0 or § = m),
to differing degrees. Near the discontinuities, # = O(+" —
™, 8 = O ~ 1, and @ = O(Y — 7Y, respectively,
Writing dx/dr = (dx/d#) (d0/d7), we see that x{(T'") is C°,
x(m) s C%, and x(7") is C% If a periodic function is C* and
if its (k + 1)" derivative is piece-wise comtinuous and differenti-
able, then the Fourier coefficients asymptotically decrease as
n~**3 Therefore, the Fourier coefficients X, and ¥, in (15)-(16)
should asymptotically decrease differently for each of the three
parameterizations. Specifically, the highest Fourier coefficients
should be proportional to r~* for Y, n~! for 7%, and n™"? for 7.
For 7" and 7 we have numerically found that this asymptotic
behavior holds, but for 7% the numerical results are somewhat
surprising. A plot of the Fourier coefficients for ¥ with N =
1024 is shown in Fig. 3 (only the even coefficients are plotted
because the symmetry makes the odd ones zero.) The Fourier
coefficients fall off faster than n™'° (almost exponentially) for
1 << 50. Only for n > 50 is the asymptotic behavior present.
For n > 100 the asymptotic behavior is overwhelmed by
roundoff error. What is surprising (based on previous experi-
ence with spectral methods) is that the Fourier coefficients with
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FIG,3. The magnitude of the Fourier cocfficients (X + ¥7)'" as a function
of n for the 7% parameterization with ¥ = 1024 for the “*cat’s-eye™” shaped
boundary. A line with a slope of »™" is alse plotted to compare with the
asymptotic behavior at 50 = n = 100, For n > 100, roundoff errors of
107% dominate.

low # usually decrease slower than the asymptotic limit. We
have no explanation for (but are certainly pleased with) the
initial rapid (nearly exponential} decrease of the coefficients.

Figure 4 illustrates the error g,(N) of these three representa-
tions as a function of N. In this case and in general, we find
that £,( N} correlates well with VX3 + Yi. In particular, for the
parameterization 7', g, decreases as N~ for 7% as N7 while
for 7% the error decreases exponentially with N until roundoff
error dominates at 1077,

4. VELOCITY CALCULATION

Our quadrature method for calculating the contour integral
in (14} to obtain the velocity (and all contour integrals presented
in this paper) is based on the fact that the integral of a periodic
function is proportional to the zeroth Fourier mode of the integ-
rand. Because the Green’s function in the integrand has a loga-
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FIG. 4. The error () of the three approximations of the “cat’s-cye”
shaped boundary as a function of the number of points on the boundary N.
We plot results for (+) #", {X) 7%, and (@) 7. respectively.
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rithmic singularity, its Fourier expansion has slow convergence,
and approximating its integral with a sum over collocation
peints results in large aliasing errors of the zeroth Fourier mode.
Following Baker ef al. [21] we desingularize the integral by
using an integration by parts,

d r
Vi(x) = —Ag jE Glix — X' (7] di dr

’ (20)
s , dix —x'(7
= qug [x — x'(DIG[|x — x' (1] Jlfi—uﬂdr,

T
where G(r) = dG(r)/dr. The surface term vanishes because the
contour is closed. If the singularity of G is logarithmic, which
is the case for two-dimensional potential vorticity CD formula-
tions, then the new form of the integral is nonsingular. Specifi-

cally for Ly — o0, we have G({r) = log(r)/27 and

Ag r[x — x'(D]d(r*)
27 3& r’ dr

vix) = el

(21)

where ! = |x — x'(1)]>. We compute the integrals in (20)
and (21) numerically by evaluating the integrand at M equally
spaced points in 7, summing the evaluation, and multiplying
by the T-spacing. This is a spectral calculation of the contour in-
tegral.

Note that the parameterization of 7 and value of M (the
number of collocation points), used in computing the contour
integral in (21), need not be the same as the 7 and N used in
representing the location of the boundary in (15) and (16).
However, for simplicity throughout the remainder of this paper
we shall choose the parameterization of the two 7's to be the
same, although in general M = N.

From (20) our approximation of the velocity at x with M
collocation points is

dx’' ()

277Aq i Axm

VM(X) - M m=1 ‘Ax,,!l

G(Ax,|) {u'(m - ]
(22)

dy' (7,

G- ) %:)}

where the M collocation points x'(%,) on the boundary are
defined as

=2mm/M, m=0,1,--M—1,

S
I

(23)

where derivatives in (22) are evaluated spectrally and where
Ax, = x — x'(7,).

In solving the steady-state and initial-value problems, we
shall need to compute the velocity of marker particles on the
boundary and therefore we need to compute v'(x) on the bound-
ary. Thus, a fair test of our velocity-finding algorithm requires
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FIG. 5. The velocity error £,(M) of our spectral method (@) as a function
of the number of collocation points M. For this test we have set P in (24) and
(25) equal to M. We also plot the e, crrors of the second-order R2 methed
(+) and Dritschel’s third-order method (X) as described by Zou et af. [8].

examining the error when v'(x) is evaluated on a set of P test
points x, on the boundary defined by

X, =x(T,):7,=2n(p—DP, p=1,2 P (24
Figure 5 shows the results of a test where the boundary is a

2:1 ellipse, so v'(x) is known analytically. We define an L,
error g,(M),

2 [vix,) — V’("f’)z}m, (25)

(M) = [
© E:,’:. v/ (x,)?

where vy, 1s our approximate velocity given by (22) and where
v’ is the exact analytically known velocity. As noted earlier,
the boundary of an ellipse with aspect ratio A can be represented
exactly by the parameterization in {19). We have used this
choice of parameterization in evaluating (25), so that all of the
errors in &,(M) are due to quadrature and not to the boundary
representation. Figure 5 shows that the error decreases approxi-
mately exponentially with M until the roundoff error is reached
at M = 32.

We now compare our velocity error with the algorithms
discussed by Zou et al. and Dritschel [9]. Zou ef al. describe
three second-order methods (all of which approximate the vor-
tex boundary by an N-polygon); one method calculates the
contour integral by using the exact formula for integration along
line segments, and the other two use a midpoint integration for
two different desingularizations of the integrand. One of the
two latter methods (which they referred to as R2) uses the
desingularized contour integral in (21) and is the fastest of the
three methods for a given M. We can compare our spectral
methods with these methods because Zou ef al. use the same
distribution of test points x,, as we do, the same (2 1) elliptical
boundary, and the same definition of &,(M) as in (25). Figure
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FIG. 6. The velocity error &{M) of our spectral method for elongated
cllipses with three aspect ratios: (@) 4:1, (X)9: 1. and (+) 20: 1.

3 clearly illustrates the differences between the second- and
third-order methods and our spectral method. Even for the
lowest resclution M presented in Zou e? af., our method calcu-
lates the velocity to an accuracy limited only by roundoff error.
In our method only 16 points are needed to calculate the velocity
to an accuracy of 1077, Qur spectral method has precisely the
same number of computer operations for the quadrature as the
R2 method which, according to Zou et al., is the fastest of the
second-order methods and is six times faster than the third-
order method of Dritschel. Hence our method, though spectrally
accurate, should be as fast as the fastest of these other CD algo-
rithms.

In Fig. 6 we show the velocity error £,(M) of our spectral
method for three different aspect ratios of highly elongated
ellipses. This is a more severe test of the velocity algorithm.
For the largest aspect ratios our method loses some accuracy,
but still only 128 points are needed to calculate the boundary
velocity of a 20: 1 ellipse to an accuracy of 107°,

5. APPLICATION TO INITIAL-VALUE CODES

Our spectrally accurate algorithm for computing the velocity
can be used in an initial-value solver by using the velocity to
advect the boundary points [x(7). y(7)| or, equivalently, to
evolve the Fourier coefficients X, and ¥, of the boundary repre-
sentation. In the previous section we described how to calculate
the velocity at P boundary points of a potential vortex. A simple
method for solving the initial-value problem is to advect these
same boundary points according to dX/df = v(x;), using any
explicit time integration algorithm.

In general three classes of initial-value problems can be
solved with CD. In one class vortices never shed filaments and
their boundaries remain regular for all time. The lengths of the
contours and the radii of curvature of the vortices remain finite,
and CD algorithms never break down. Geophysical potential
vortices with finite Rossby deformation radius L, and vortices
embedded in shearing zonal flows in which the shear and the
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potential vorticity have the same sign are often in this class.
The algorithm for the temporal evolution of the boundary points
can be decoupled from the algorithm that computes the fluid
velocity v as a function of the locations of the points. Thus the
exponential convergence of our spectral method for computing
v carries over directly to this class. A second class of flows
consists of potential vortices that form one or two large-scale
tails that are advected to infinity by v but form no small-scale
filaments, cf. Fig. 12. A CD method will eventually break down
at (and only at) the tails when they become thinner than the
numerical resolution. However, the break down is benign in
the sense that it can be circumvented by removing sections of
the tail that are thin, far from the main bodies of the vortices,
and that would be swept rapidly to infinity by ¥ had they been
kept. Their removal can be carried out in a physically motivated
way, and the late-time flows have been shown to be insensitive
to the details of how the removal is carried out [19, 20]. This
class of flows is relevant to geophysical flows such as Jupiter’s
Great Red Spot | 18]. In this section we provide examples of the
exponential canvergence of our spectral method for these flows.
There is a third class of flows (and the one most frequently
discussed in the literature) in which the vortices continuously
shed small-scale filaments all along their boundaries. Due to
the rapid stretching of the contours and exponentially fast de-
crease of the radii of curvature, CD methods break down quickly
and at many locations. Thus, a spectral method’s factor of 10
or 100 in increased spatial resolution over a finite-difference
method is not that great an advantage. Contour surgery can be
used as a fix-up, but in general it does not cure the break down,
it only postpones it [9]. Although we have developed a contour
surgery for spectral CD [19], we do not use il in any of the
calculations reported in this paper. (Another, perhaps more
useful, form of smoothing that keeps a spectral CD from break-
ing down is the damping of the highest Fourier coefficients in
(15) and (16) [19].) We shall not make a direct comparison
here between rates of convergence for finite-difference and
spectral CD» methods with contour surgery or contour smoothing
because there are no analytic test cases. Moreover, because
there is no proof that any of the dissipative CD algorithms
converge to solutions of the nearly inviscid limit of the Navier-
Stokes equation, comparisons among the different methods
might not be meaningful. Thus we limit the discussion here to
the two classes of geophysically interesting flows in which the
CD method never breaks down or breaks down benignly.
Our specific procedure for solving the initial-value problem
is to first define a 7 and the functions of x(7) and y(7) for the
initial boundary shape. For example, in this section many of
the initial conditions are ellipses, so we choose (19) for the
initial relation between Tand (x, y). Once the initial 7is chosen,
the initial N locations of the Lagrangian boundary points are
defined x; = x(7) with 7 given by (17), so the initial /2
Fourier coefficients in (15) and (16) are determined. The M
collocation points x, = x{f,,) with %, given by (23} are then
determined and used to compute the velocity vi, using {22) at
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each of the N Lagrangian boundary points x,. Each Lagrangian
boundary point is then evolved forward in time At to its new
position by solving dx./dr = v'(x;) + V(x,). The procedure then
repeats, Note that the relation x(7) is a function of time, but in
this paper it is for all time x; = x(r) with 7, given by (17). In
all but the last example of this section & is held fixed. Changing
its value to N’ is equivaleat to adding or subtracting Lagrangian
points on the boundary with a Fourier interpolation: the values
of the N Fourier coefficients in Eqs. (15) and (16) are fixed
while & is replaced by N' in Eq. (17). Changing the definition
of 7 in time while keeping N fixed is equivalent to rezoning
the boundary points along the boundary. Only the last example
of this section uses rezoning. Van Buskirk [19] has a more
general discussion of rezoning algorithms with spectral meth-
ods. He found that rezoning with equal arc-lengths between
boundary markers worked very well and was robust. Refine-
ments, such as weighting the spacings by the local radii of
curvature, did not significantly increase the accuracy of the cal-
culations.

The time-stepping in solving dx;/dr = v(x;, 1) is carried out
either with fourth-crder Runge—Kutta or Bulirsch—Stoer. In the
numerical solution of the initial-value problem there are three
distinct sources of error: errors in boundary representation,
errors in calculating the velocity contour integral, and errors
in the time integration. In this paper we are not interested in
the time integration errors. Thus we will pick a small time step
in Runge—Kutta or error tolerance in Bulirsch—Stoer so that
the other two sources of error dominate. We do not explicitly
enforce the conservation of any guantities (e.g., circulation,
energy, and momentum) but use the changes in these conserved
quantities as tests of an algorithm’s accuracy.

5.1. Test of Rotating Kircholf Ellipse

Analytical examples of the first class of flows are the rotating
Kirchoff and oscillating Kida ellipses. Kida [22] first analyzed
the evolution of an elliptical patch of potential vorticity ¢° with
a v that is linear in x and y. For a ¥ of the form

v(x) = —(Q1 + ypR + (& — yid, (26)
an initially elliptical patch of potential vorticity will remain
elliptical for all time. The angle ¢{r) that the major axis of the

ellipse makes with the x-axis and the ellipse’s aspect ratio
A(1), obey

dx .

i 24y sin{2¢h) 27
do _ Agh AT+ 1)

g —(A 1) + Acos(2dh) =1y (28)

There is a scale invariance in the problem, and the values of
A(fy and ¢A(f) do not depend on the area of the ellipse. Kirch-
hoff’s solution is a special case of (27) and (28) with v = Q.
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FIG. 7. The crror £,(N, M) in the time evolution of a Kirchhoff ellipse
as a funciion of N = M for three aspect ratios: (@) 4: [, (X)9: L and (+)20:1.

A Kirchoff ellipse rotates with the constant angular velocity
Q4 = AgA/(A + 1) and has a turnaround time or rotational
period T = 2m/{};. For A(H) > | the semi-major and semi-minor
axes are a(f) = (A m)"2 and b(t) = (A/A(Nm)=, respectively,
where A is the area of the ellipse.

When we compare numerical results to the analytic elliptical
solution, we are not interested in the precise distribution of
Lagrangian boundary points x; along the boundary, but in
whether or not they lie on the ellipse given by the analytical
solution. Hence we define an error that is independent of the
distribution. When the exact analytically known solution is an
ellipse with semi-major axis «(#), semi-minor axis b{(s), and
angle (1), we define the boundary error g,,

N =2

|1 Xi _)"_;2_7 i
Erw M)—{N Z(amﬁb(r)z 1)] .29

where (£, ¥,) is the location of the numerical boundary point
x; rotated by ~¢. Figure 7 shows the error &, of our initial-
value calculations of three Kirchhoff ellipses with different A
and A = 1 and Ag = 1. Here we have chosen N, the number
of Lagrangian boundary points, equal to M the number of
collocation points used in computing v, (x;} and 7 as in (19).
The error is shown after integrating with the Runge—Kutta
method for § turnaround time with 2000 time steps. Because
the boundary parameterization 7 in this case is exact, the errors
of this initial-value calculation closely follow the quadrature
errors g, in Fig. 6. In Both Figs. 6 and 7, the errors decrease
expenentially with M at approximately the same rate until they
reach roundoff error. The roundoff error in £, is approximately
2000 times smaller than roundoff error in £, which accumuliates
over 2000 time steps.

We compare our initial-value results with Dritschel’s third-
order method. Dritschel integrated the equations of motion for
a Kirchhoff ellipse with A = Ag = | and calculated the error
in the position of the Lagrangian boundary points for different
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FIG. 8. Samc as Fig. 7. but the initial 7 cquals & the azimuthal polar
coordinate, and we plot errors for (@)} 2:1, (X) 5: 1, and (+) 15: 1 ellipses.
The large value of &, for the 15: 1 ellipse is not duc to numerical crror, but
to the fact that the initial-value code follows the unstable solution rather than
the steadily rotating Kirchhoff solution.

aspect ratios. Generally, for 256 Lagrangian boundary points,
his error is less than 107* for aspect ratios between 2 and 10.
(His measure of error is slightly different from ours, but if his
is multiplied by 2A'? they are equivalent to first order in the
error). We repeated his calculations with our spectral method
for a 10: 1 Kirchhoff ellipse and found that for N = M = 64
our error is below 1077, Since the computational work of an
initial-value code is proportional to NM and because the spectral
method has one-sixth the computational work as Dritschel’s
(see Section 4), the spectral method for a 10: | Kirchoff ellipse
requires one-hundredth the computational work per time step
as Dritschel’s for the same accuracy.

We have repeated our spectral calculations of the Kirchhoff
ellipse for a different initial 7 (i.e., we rezoned the initial condi-
tien). Instead of defining 7 as in (19} (which represents the
initial boundary exactly), we set 7 = 8, the azimuthal polar
coordinate. In this case, the results are more complicated be-
cause the boundary is no longer represented exactly. Figure 8
shows the error g, as a function of resolution for the three
ellipses whose initial boundary representation error g, are illus-
trated in Fig. 1. The error g, for the 2 : 1 Kirchhoff ellipse foliows
the boundary representation error g, very closely because the
quadrature error g, is much smaller than €,. For the 5: 1 ellipse,
the error g, in the initial-value calculation is slightly larger than
the error g, in Fig. 1, and the stope of &, is about 15% steeper
than the slope of ,. For the 15:1 ellipse the error &, is much
greater than g, due to the initial discretization of the boundary.
Although some of this is due to quadrature, most is due to the
fact that the 15:1 ellipse is linearly unstable and our initial-
value code follows the insiability rather than the steadily rotat-
ing Kirchhoff solution. The instability is more pronounced in
the 15:1 ellipse of Fig. 8 than it is in the 20: 1 ellipse of Fig.
7 because the initial amplitude of the unstable mode is much
larger in the former due to the fact that the latter has no initial
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boundary discretization error (except for roundoff) and there-
fore no initial amplitude for the unstable eigenmode. Another
way in which the error of the initial-value is measured is by
examining the constancy of the conserved quantities. For ex-
ample, we have computed the area A as a contour integral
using

AN = JJ dxdy = %x fl—‘:dt (30)

The fractional errors in A, [A{) — A))/AD). for the 2:1
and 5:1 ellipses in Fig. 8 are always much smaller than their
corresponding g,(N, M). For the 2 : 1 ellipse the fractional error
in A is three orders of magnitude smaller than (N, M) for
N=M=32and for N = M = 64

5.2. Test of Oscillating Kida Ellipse

We also tested our code with an oscillating Kida ellipse with
A =10, Ag = 1,and {} = y = & Att = 0, the ellipse is
aligned with the x-axis and has A = 2. The initial positions of
the marker points are given by (19). Table 1 shows the error
g, defined as in (29), where M = N. The period T of the
oscillation is 6.956. The CD does not show any sign of breaking
down after three million iterations with Ar = 0.002. Table I
shows that the error is small, decreases exponentially with
increasing N (until it reaches roundoft), and mimics the velocity
error shown in Fig. 5. The area of the Kida ellipse is conserved
in time, and its fractional change in our numerical integration
is given in Table Il which shows that it is similar in magnitude
and behavior to g, in Table I. The fractional changes in the
energies of the Kida ellipse are approximately the square root
of the fractional changes in areas given in Table II, and the
fractional change in momentum J [ v§ dxdy is always of the
order of 107" machine roundoff.

5.3. Test of 2-Contour Vortices with Finite L,

For finite L, we first tested our code by examining the analyti-
cally obtainable eigenmodes of an equilibrium consisting of
two concentric, circular contours with ¥ = (0. The two contours

TABLE 1

Error g, as Defined in Eq. (29) for the Kida Ellipse
Described in the Text, Where the Oscillation Period is 6.956

N t=35 t =50 = 500
p 3.1 x 197 3.0 X 107? 3.0 x 1077
16 9.4 X 107 7.8 x 107 2.9 x 1077
32 4.1 x 107" 3 x 107" 1.9 x 1071
64 33 x e 5.8 x 107" 2.1 X 1"




310

TABLE 11

Fractional Change {A() — A{0))/A(0) for the Kida Ellipse in
Table I; for N > 64 Roundoff Dominates the Ervor

N t=5 t =50 = 500
8 1.9 X 10°° 8.5 x 107 35 X 1077
16 1.8 X 1077 38 X 1077 28 % 1077
32 4.7 x 107" 6.4 % 107" 6.7 x 107"
64 5.7 x 107" 6.6 % 1071 7.0 X 10"

have areas A, = 25, A, = 4, with jumps in potential vorticity
Ag, = 15 and Ag, = ~2, and L, = 1. The perturbation eigen-
function of the two contours is

r1(¢>, I) =g Real[eim(‘jﬂ,)]
r{d,H=¢ Real(d eim(dw—y,)]'

(31
(32)

For m = 4, § = (.5387891 with phase speed 5 = 0.961066081.
The code was initialized with the m = 4 neutrally stable eigen-
mode with & = 1073 and equal azimuthat spacing in the bound-
ary points. The eigenmode has period T = |27/msf = 6.54.
The error &g, defined as the L, norm between the numerically
computed locations of the boundary points and their values
from Egs. (31)~(32) is similar in magnitude to the values of
g, in Table 1 for the Kida ellipse. It decreases exponentially
with N and increases linearly with time.

To test the code with a nonlinear fiow whose evolution cannot
be obtained in closed form we examined the two-contour voriex
shown in Fig. 9 which has ¥ = —y&, A, = 25, A, = 4, Ag, =
15, Ag, = 2, and [, = 1, The initial boundaries are 2: I ellipses
{which are not an equilibrium) plus large noise in azimuthal
modes with m < 10, The flow remained computable without
need for contour surgery for as long as we integrated in time
(over three million iterations.) The areas circumscribed by the
two contours A, and A, should each be conserved in time. Table
111 shows their fractional errors and demonstrates that they are
small and decrease exponentially with N.

5.4. Test of the Unstable Eigenmodes of a Kirchoff Ellipse

Our initial-value code also captures the unstable eigenmodes
of a 4:1 Kirchhoff ellipse with infinite .. Love [23] was the
first to calculate the linear stability of rotating Kirchhoff ellip-
ses. Define (£ 7) as the Cartesian coordinates in the frame
rotating with the same angular velocity as the ellipse (with the
major axis along £), ¢ and b as the semi-major and semi-minor
axes, and (£, m) as the rotating elliptical coordinates

(%, §) = c(cosh(&) cos(mn), sinh({£) sin{n)) (33)
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FIG. 9. The nonlinear evolution of an equilibrium consisting of two con-
centric circular contours with L, = |, areas A, = 25, A, = 4, Ag, = 15,
Ag. = 2. and N = M = 128 at t = 40. The CD does not break down.

with ¢! = @® — B, The location of the perturbed boundary of
the Kirchoff ellipse is given by

nn=&t %eXp(af) [cos(mm) =V d,/c, sin(mm))
i (34)

+ (),
where
‘ =£ 2mA A1y
tn = [()\"'1)2 ]+('\+1)J &
_Ag| 2ma o (A1)
“=3 [(AHP ' (,\+1)] o
h = [a@* sin(a) + b7 cos’(m]/c’, (37

where & = In[(a + b)/(a — »)]/2 is the location of the unper-
turbed boundary, & is the initial amplitude of the perturbation,
V' —¢,.d,, and m is an integer. For our test of a 4: 1 ellipse
with Ag = 1, we pick the initial parameterization to be 7= 7
and the initial perturbation of the boundary to be the unstable
m = 3 eigenmode given by (34) with § = 3 X 1077, Using
Runge—Kutta, we evolve the boundary to ¢ = 10, taking 200
time steps. The growth rate o is 0.106. At r = 10 we define
the error N, M) as

o =

TABLE 111

Fractional Change in Area of the Quter Boundary of the Two
Contours Shown in Fig. 9 |4,(z) — A,(0)|/4,(0)

N 1= 01 =140 t = {0,
16 6.9 x 1074 7.6 % 107 69 X 107
32 20 x 107t 47 x 107° 37X 1w
64 54 % 10°w 2.0 x 1078 42 x 1077
128 14 x 1o 1.8 x 107" 1.8 x 107°
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FIG. 10.  The error &(N, M) which measures the difference between the
analytically known unstable, :n = 3, linear perturbation of the boundary of
the Kirchhoff 4: 1 ellipse at ¢+ = 10 and its numerically computed. nonlincar
value. Here, N = M. Nonlinear effecis that invalidate the lincar theory dominase
the numerical crror when g, = 107

U (lT) — Er) NP
AN, M} =
‘ {5, (&n) — &P 1NP”

(38)

where §, is the numerical solution and £ is the analytic
linear solution. Figure 10 shows the error as a function of
N. It illustrates that with N = M = 64 we resolve the linear
dynamics. Increasing N to 128 points does not appreciably
change the error. For N = M = 64 the numerator in
(38), which is a measure of both the numerical errors in
the initial-value code and the error due to approximating
the instability with linear theory, is less than 107 while the
denominator which is a measure of the amplitade of
the linearly calculated perturbation is approximately 1075,
The nenlinear corrections to linear theory are of order (e*8/
hg)? which is 5 X% 107" at r = 10, so a fully resolved
numerical calculation cannot produce a numerator less than
5 X 107" Thus edN, M) at + = 10 for a fully resolved
numerical calculation is between 107 and 1075

Zou et al. examined the linear instability of this same
4:1 ellipse by initializing their second-order calculation with
both the stable and unstable m = 3 eigenmodes. We have
reproduced their calculation with our spectral initial-value
code and found for Ar = (0.164 and A = 7 that at 1 =
6.545 (% rotation period for a 4:1 ellipse) our code with
N = M = 32 has a value of error g; that is smaller than
theirs when they used 128 boundary points for the same
boundary point distribution.

5.5. Test of an Elongating Kida Ellipse

By computing the Kida ellipse with Ag = 1, v = y&, with
the major axis aligned initially along the y-axis and with the
initial aspect ratio of 2: 1, we have tested our code’s ability to
compute vortices that are stretched to infinity by ¥(y) but that

311

do not shed filaments. The ellipse does not oscillate but elon-
gates continuously. The aspect ratio A increases without bound
as time increases as shown in (27). This calculation must break
down. It is used to test where the CD method fails as a function
of the average spacing between boundary points {or collocation
points) with respect to the distance between the two nearly
parallel contours that make up the opposite edges of a highly
elongated ellipse. Figure 11 shows the evolution of &, with
N=Muptor =4 when A = 4572, The fractional error in
the area is nearly identical to g,.. We find that g, increases
beyond 0.01 when A increases beyond N/2. This means that the
calculation breaks down when the spacing between boundary or
collocation points is a little larger than the width of the elongated
vortex. This is not surprising and can be understood by a simple
argument. Approximate a highly elongated ellipse of constant
g’ with a vortex layer where the boundary contours are parallel
lines separated by distance d. Let the layer be parallel to the
x-axis with the two contours at ¥y = 0 and v = d. From
(213, ¥' at the origin (or any other location on the lower bound-
ary) 18

v

'=q_’ﬁr CHpVC 39
T R T (39
With the collocation points distributed uniformly with a spacing
of Ax, the numerical approximation of (39) becomes

e vy = 0 AN ‘ :
Vit y =0, A0 by = Ax,,:z_m(n+h)3+(d/11x)1' (40)
I
S<h<s,

where the collocation point nearest the y-axis is a distance hAx
away (hence k is the relative phase of the collocation points).

10°

10-*
(N, M)

10-#

1o~

FIG. 11. The error £ as a function of time for a continuously elongat-
ing Kida ellipse with Aq = 1 in a ¥V with an adverse shear of —1 for (@)
N =32 (X)N =064, (+)N =128, and (A) N = 256. All calculations have
N=M
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The sum in (40) can be evaluated in closed form for h = Q
and h = 1%,

oA

Vi, y=0 A h=0)= qzdx coth(u)

:%&(1 + 2 4 1) “
Vi y=0,Axh=05) = "'2‘{"‘ tanh(p)

T IR “

where ¢ = wd/Ax. Hence, in this simple case we can prove
that our approximate quadrature converges exponentially in
(Ax') to the exact velocity. Furthermore, we find that when the
collocation point spacing Ax is equal to the distance between
contours d, that the relative magnitude of the leading order
error tern is 0.004, in reasonable agreement with our earlier
observation that g, is approximately 0.01 in our initial-value
method when the collocation point spacing is equal to the width
of a highly elongated ellipse.

5.6. Test of a Vortex with Tails ar the Stagnations Points

As an example of a flow that produces tails at the stagnation
points but does not filament, we consider the vortex in Fig. 12
which initially is a circuiar contour with area 30, Ag = 1,
infinite L,, center at the origin, and ¥(y) = (—» + ¥/3)%. The
v advects the top and bottom of the vortex to oo, Every 20th
iteration (with At = 0.05) marker points located at |x] > 9.5
were removed, and the remaining points were reconnected using
the Fourier interpolation of Eqs. (15)—(17) and then rezoned
with equal arc-lengths between points. This calculation is repre-
sentative of the geophysical vortices reported in [18], where
the vortices relax to equilibria by the dissipation implicit in the

-removal of the outlying sections of the vortex tails. The physical
mativation for that approximation is discussed in [20]. Here
we confine ourselves to showing that the numerical algorithm
is accurate when the tails are removed. The flow in Fig. 12
has no analytic solution, but the area and reduced energy are
conserved during the periods between the times that sections
of tail are removed. The reduced energy is defined [20]

(Ag)

E=-Aq ”dedy + L

Q(l r
+ & 2+lnﬂ_ .

i it 1+ dyey)
(43)

where v = (x — x'V¥ 4+ (v — ¥'¥ and T is the potential
circulation. (The reduced energy is the difference in energy
between the actual flow and the flow if all of the potential
circulation were in a circular contour.) The fractional errors in
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area and reduced energy at a late time are given in Table IV.
The errors are small and decrease exponentially with N. A more
stringent test is to use Eq. (43) to compute AE,, the change in
reduced energy at the I' time that a section of tail is removed.
After L sections of tail have been removed energy balance re-
quires

L
E(0) — E(t) — D) AE[/E©) = 0. (44)
i=1

For the flow in Fig. 12 at r = 26 and L = 24 the left-hand side
of Eq. (44) is 1.13 X 1072, 3.68 X 107 and 7.00 X 107 for
N equal 512, 1024, and 2048 which shows that the error
is small and decreases approximately exponentially with A
Note that + = 26 is considered a late time because the reduced
energy at that time is approximately one half of its initial
value.

6. CALCULATION OF STEADY SOLUTIONS

In this section we develop a Newton, pseudo-arclength, con-
tinuation method using spectral techniques for computing
steady, uniformly translating, and rotating equilibria. The
methed is particularly useful for computing bifurcation dia-
grams for stable and unstable equilibria. Other authors have
also developed methods to calculate steady CD solutions.
Pierrehumbert’s relaxation algorithm [24] in particular could
be easily modified to be spectral. The computational work per
relaxation step for Pierrehumbert’s method and Wu ef al.’s
method [13] scale as N7 but neither method computes the linear
stability of the equilibria or their bifurcations as our continua-
tion method does. Moreover, despite the fact that the work of
a continuation method scales as N?, we have found that our
continuation method converges quickly (usually less than
10 iterations, compared to about 100 in [13]), and because
our method is spectral it requires about four times fewer
boundary points than finite-difference methods for the same
accuracy.

6.1. Boundary Advection Condition

The condition that a vortex be steady in some frame implies
that the component of the velocity normal to the contour at the
contour is zero. Using (20) this gives the following condition
on x(7) and y(7):

PP — x(n]¢
( s dﬂ) 0 + Ag § 1x ~ x' (MGl
(45)
e AE Xl
dr

We can multiply (45) by any function of 7 that does not pass
through zero to get an equivalent condition.
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FIG. 12, The cvolution at five different times of the boundary contour of an initially circular vortex with A = 30, ¥ = (—y -+ y")%, and Ar = 0.5. Every

20 time-steps potential vorticity in the two vortex taits at x| > 9.5 is removed.

The initial-value method in Section 5 advects the N boundary
points as passive tracers. Clearly, the advection of a contour
does not depend on the tangential component of the velocity
at the contour. Hence, even though our boundary points have
both tangential and normal degrees of freedom, we are inter-
ested in only changes in the latter. Therefore in our steady-
state solver, we constrain the boundary points to move along
a set of fixed lines that we shall call transversals. The direction
of these transversal lines are chosen arbitrarily, fixed for all
iterations, and defined below. Define the 2N real unknowns
that specify the / iterate of the /" boundary point(x{7, j), (7,
J¥) = xi{, where 7, is defined as in (17) and where {x?}, is the
initial location of the boundary points. Label the & unit-length
transversal vectors f;, where £ - fi; # 0 and A, is the local unit
normal to the boundary. The N conditions that constrain the
peints to move along transversal lines that intersect the initial
values x! are

(46)

where Ari=x{— x!. The condition that the boundary is
steady becomes

dx; 2, (1) - i
F(r)=F="2" YD AT gy
dt t;-
xar=0 it

Equation (47) shows that the definition of §, as long as §; -
i; # 0, does not effect equilibria, but its choice will determine
the rate and radius of convergence of our method. In practice
some care must be taken in choosing the f;, because some
choices imply boundary constraints that cannot be satisfied by
the steady solutions. An example of this is seiting ; to a set
of unit radial vectors. With this choice, if we begin with a
boundary that encircles the origin and is single-valued in 8,
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TABLE IV

Fractional Change in Area and Reduced Energy at Late
Times in the Vortex Evolution Shown in Fig. 12

N A= 16) — A{r = 15) \EU=I®*EU=J$
AU=15) Ei=15)
256 1.2 X 10~ 32 % 107
512 92 x 107 2.7 % 107
1024 26 X 107 §7 x 10
2048 2.0 % 107 17 % 10}

Note. There is no removal of vortex tail and no rezoning between
t=15and s = I6.

then the boundary is constrained to remain single-valued. If
we attempt to calculate a solution that is not single-valued in
6, the denominator in (47) goes to zero. When that happens,
we find that either the Newton method does not converge, or
it converges to a non-physical solution that has a sharp jump
in the radius as a function of 4.

A second problem due to a bad choice of {; arises if the
transversals cross each other near the boundary. When transver-
sals cross on the boundary, the boundary develops a figure-
8 pattern (which is unphysical) or is double-valued in our
parameterization. In either case, the denominator in (47) ap-
proaches zero and the method either fails to converge or con-
verges to an unphysical solution.

To solve (47) with a Newton method, we would first com-
puter the Jacobian,

aF, . aF, .\ .
DFjp=l—x+—¥%]-t,
Bxk dy;‘.

(48)
where the 9F/dx, and aF;/dy, are calculated explicitly from the
numerical formula for F; in (47) and where (48) is not summed
over the index /. Thus (DF) is an N X N matrix. Although it
appears that there are 2N unknowns, x{ and v/ at each iteration
j. there are in fact only N scalar unknowns: Ar = |Ar] =
|x/ — x4|. Or equivalently, the 2N scalars in X/ can be recovered
from the N scalars Arf (and their previous iterate) from

Xi = (Arl— ArfOE + xi7 (49)

The N scalars Ar{ are determined with the usual Newton method

N

Ari = Arim' = Y (DF);'F,

k=]

(30)

where F, is determined by (47). In practice, the Jacobian given
by (48) is singular, so it cannot be used to compute numerical
solutions. It must be modified as we now show,
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6.2, Iteration with Constraints

In general the condition (47) is not sufficient for determining
a unigue solution because it does not conserve the area, momen-
tum, or energy. For the Newton equation to be well posed, new
constraints that conserve area and one or more of the momenta
must be added. When the conditions in (47) are augmented
with these constraints, the steady, unifdrmly translating, or
rotating solutions no longer form a continuum but are distinct
from each other. Without these additional constraints the Jacob-
lan (DF) in (48) is singular. For example, when v = 0, the
solution can be translated by an infinitesimal amount in any
direction and still remain a solution. The invariant translations
correspond to eigenvectors of (DF) with zero eigenvalue, hence
{DF) is singular.

For a zonal v, ie., 0, = 0 and dv/ax = O (or &, = 0 and
du,/dy = 0), constraining the center of vorticity and the area
interior to the contour is sufficient to make the Newton equa-
tions well-posed. The constraints to be added to (47) are

:_,1_ Yy — v =l '—dy — Y, =

FN“_AJJJdId) Yo Aj(u) a’TdT »=0 (GI)
1 g

FA-+2=Hfdexd} xU—Aéx,\, deT =0 (52)

Fros = [y -4 = %x%m —A=0, (53)

where the contour integrals are evaluated spectrally using M
collocation points, where the center of potential vorticity is
constrained to be (x;, y,). and where the area is constrained o
be A. Note that for a zonal ¥, {1) conserves the momentum in
the x (or y) direction which is proportional, up to a constant,
to Fyyy (01 Fyya).

For the Newton method, the Jacobian (DF) must be main-
tained as a square (and invertible) martrix. Thus we must add
a new variable to the velocity for every new constraint that we
enforce. Calling these new variables Vi, , Vy,», and Vy,;, the
total velocity v(x) becomes

vix) = (Voo + Vs OR + (Vi: + Vs )y + vix) + v'(x),
(54)

where ¥(x) and v'(X) are as defined in Section 2. The Vyy,
Viysa, and Vi, add a translation in x, in v, and a divergence 1o
the velocity. We choose these as supplementary unknowns
because these three additional velocity fields are complemen-
tary to the constrained quantities. The Vy., changes x,, Vy.2
changes ¥,, and V,.; changes the area. It is easily shown that
if V-v = 0and if the Newton method converges to a fixed
point, then V., must converge to zero, so V - v' = 0. Moreover,
if 0, = 0 and ov/9x = 0 (or v, = O and 9v./dy = () then Vg,
(Vie) converges to zero. A finite value of Vi, (Vyio) corre-
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sponds to a uniformly translating vortex in the x (y) direction.
(For an azimuthal v, where v, = 0 and 9v,/38 = 0, the initial-
value equations conserve the angular momentun. The con-
straints needed to augment(47) and the new variables are more
complicated and are discussed in the Appendix), We have found
that the Newton method with the (N + 3) X (N + 3) Jacobian
corresponding to (47) augmented with (51)—(53) is robust and
converges quadratically in less than 10 iterations.

6.3. Refinements of the Newton Method

Instead of solving Eqs. (47) and (51)—(53) directly, we solve
their Fourier transform. The robustness of the method can be
significantly enhanced by modifying the equations so that the
equation for the highest Fourier mode of F; is replaced with
the constraimt that the highest Fourier mode of the boundary
shape x(7) remain zero for all iterations, or equivalently,

N
21 (—1¥Ar=0. (55)

These modified equations damp the high wave number oscilla-
tions of the boundary without noticeable loss of accuracy and
give the method a much larger radius of convergence.

A second change that we have made to our Newton algo-
rithm is that we have made it into a pseudo-arc-length continua-
tion method so that we can follow bifurcation curves around
saddle nodes {25]. We take unequal step sizes in the bifurcation
parameter, where its (/ + 1) iteration o/*! is determined from
its previous value & by

[B > Ity = x;(e)]P + (@ — a’)l] T AS=0, (56)
i=1

where B and AS are parameters that we choose for numerical
convenience. By taking constant AS steps rather than constant
Aex steps, we can follow families of solutions around turning
points.

6.4. Convergence and Errors

To illustrate the nature of our spectral continuation method
we have used it to calculate known analytic solutions and their
properties. Here we compare our numerical solutions to the
Moore—Saffman elliptical steady vortices for the case where
the shear of v is opposite (adverse} to Ag [26].

Let M be the number of collocation points £, in computing
the contour integrals in (22} and let N be the number of boundary
points X;. Then the number of operations required for evaluating
the elements of the Jacobian is proportional to NM and for
inverting the Jacobian proportional to N°. We often find that
the errors in our calculation are dominated by the quadrature
errors. Because the quadrature error decreases exponentially
with increasing M, we choose to set M = 2N rather than M =
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FIG. 13. The error e,(V. M = 2N) of our continuation method for she
branch of unstable Moore—Safiman ellipses with vV = y& (adverse shear). The
errors are shown as a function of aspect ratio A for (@) N = 32, (X) 64, {+)
128, and (A) 256. The complicated structures of the curves and the large (oft-
scale) value of the ¥ = 32 curve near A = 5.5 are hecause this branch of
solutions has a sequence of hifurcations as a function of A. The errors are large
near each of the bifurcation points.

N. This results in a two to three orders of magnitude decrease
in error for an increase in a computation cost that is less than
a factor of 2. We begin our test by computing an equilibrium
vortex with Ag = 10 with v = »& (30 ¥ has a shear adverse
to Ag). We march along the bifurcation curve with Ag initially
decreasing. The method has no difficulty going through the
saddle-node bifurcation at Ag = 1/(3 — 2V2). In these calcula-
tions we choose 7 such that 8 = 7 + sin(27)/2 so that points
are concentrated near the y-axis (i.e., where the ellipses have
their largest curvature), and we choose our transversals i, to
be radial vectors. This forces the boundary points to lie on
radial rays equally spaced in 7. We choose our constraints such
that A = 1, and (x, ¥g) = (0, 0). We find that the auxiliary
variables V4, Visa, and V4, all converge to zero to within
1072, In all cases the algorithm converged in fewer than 10
iterations. Figure 13 shows g, defined by (29) as a function of
the aspect ratio A of the steady equilibrium ellipses on the
unstable branch of solutions for various N. In all cases M = 2N.
The figure shows that 64 boundary points are often sufficient for
ellipses with A < 10. For a highly elongated ellipse with A =
20, g, 1s less than 107* for ¥ = 128, The complicated structure
of g, as a function of A is a reflection of the complicated
bifurcation behavior of these unstable Moore—Saffman ellipses.
This branch of solutions has a sequence of linear instabilities
as a function of A, and the local extrema in Fig. 13 are near
these bifurcation points because at each of these bifurcations,
the Jacobian (DF} is singular and non-invertible [17, 18].

We have also tested our ability to calculate the linear stability
of steady solutions. As described in Section 4, a Kirchhoff
ellipse of aspect ratio A is a steady solution with v =
—{{~y& + x¥), where £} = AgA/(A + 1) In this test we
examine the linear stability of a4:1, Ag = 1, A = 1, Kirchhoff
ellipse. We know analytically from Section 4 that the ellipse
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FIG, 14. The boundary shape used as the input into the inverse-solver.
This boundary shape is the equilibrium output of cur Newton code with
V(y) = (~v + vV for Ag = 5. A = 1648087, and Le = 1. It has twe
comers at x = 0. The collecation points are plotted as circles.

has one stable and one unstable eigenmode with m = 3 and
that all of the others are neutral. En our calculations we define
7 such that # = 7+ sin(27)/2 and such that the major axis of
the ellipse lies along the y-axis. We use N boundary points x;
of the ellipse in our numerical calculation of the elements of
the unaugmented N X N Jacobian in (48). We find the fractional
error of the numerically computed stable and unstable eigenval-
ues of (48) with respect to the analytically known eigenvalues
are less than 107", 107%, 107'°, and 107'¢ for N = 32, 64, 128,
and 256, respectively (where M = 2N). The unstable eigenmode
is known analytically from (34), and the error & (defined in
(38)) of our numerically computed eigenmode is 0.2, 1.4 X
1073, 7 X 1077, and 8 X 107" for N = 32, 64, 128, and 256,
respectively (where M = 2N).

7. THE INVERSE PROBLEM

In the previous section, we outlined how to calculate the
contour shape of a steady vortex, given v. In this section we
examine the inverse problem: given the boundary and Ag of a
potential vortex, find a ¥ (and a function 8 in (7)) that makes
that vortex a steady equilibrivm. This inverse problem is useful
for several reasons. First, as we shall show, the solution v can
be solved for directly without iteration. Comparison between
the solution found with the inverse method and the continuation
method is yet another test of our code. A sgcond interesting
use of the inverse method is that we can input contours with
singularities (e.g., boundaries with corners as in Fig. 14) into
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the code and find the ¥ that make them equilibria. We can then
examine their stability by evolving them with our initial-value
code. Finally, a third use of the inverse problem is in our studies
of long-lived planetary vortices in which the bounding contour
of a vortex is observed. Assuming the vortex has a constant
potential vorticity, we can infer the v of the surrounding
flow [19].
To solve the inverse problem, we note that the condition
(45) for a vortex to be steady can be rewritten as
i v(x) = —h - vix), (57
where i is the unit normal vector of the boundary. Because
we are given the location of the boundary, we can calculate
both fi and v’ (using (22)). Thus the right-hand side of (57) is
known, and we can solve for the normal component of ¥ at
every point along the boundary. When the functional form of
v is sufficiently constrained, we can uniquely calculate v from
its normal component. For example, we are often interested in
zonal flows of the form v = v(y)X and azimuthal flows v =
o(r)d. In these cases

v(yy= —(f-v')/(ii- %

e
—

(58)
and

o(r) = —(h - vO/(h - ). (39)
The inverse problem has a unique solution, except where (fi -
%) = Oor (i - §) = 0. There, the solution for ¥ is indeterminate,
For these forms of ¥ certain solvability criteria must be met.
For example, for v = ©( y)k the solvability conditions are suffi-
ciently satisfied when the boundary does not cross itself and
is reflection symmetric about the y-axis. Furthermore, if the
boundary has a discontinuous tangent vector (i.e., a corner),
the discontinuity must lie on the y-axis (as in Fig. 14).

We have used the inverse problem to test the consistency
of our continuation method by taking a steady-state solution
calculated with the continuation method with an arbitrary zonal
velocity v(y)X and then used that boundary as an input to the
inverse problem and calculated the zonal velocity Ujpe{1)X
that satisfies (54). The difference between the v(y)X that was
input to the continuation method and the Ujy...(y)X output from
the inverse problem is a measure of the consistency of our
methods.

Figures 14 and 15 show the results of one such consistency
check for a steady potential vortex with a ()R that has a non-
uniform shear. Figure 14 shows the shape of the steady potential
vortex found with the continuation method for L, = 1, 4 =
16.48, Ag = 15, and ¥(y) = —(y — y/3)%. This is a severe
test of both the continuation and inverse codes due to the two
corners along the y-axis. Here M = 2N = 256, the parameteriza-
tion 7 is defined by 8 = 7 + sin{(27)/2 and the {; are radial
vectors. Figure 15 shows the difference between the original
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FIG. 15. The absolute value of the difference between the Z{ v) input 10
the Newton code and the . ( ) output from the inverse-solver. The greatest
error occurs at values of ¥ near {(fi - £) = 0, where the solution of the inverse-
solver is indeterminate.

zonal profile and that calculated from (58) at each boundary
point as a function of y. The difference is near 10™* over much
of the boundary except at the corners, where fi - X approaches
zero and the difference increases by a factor of 100. This result
is consistent with our results from Section 2. Figure 4 shows
that the relative error g, in representing the boundary of a
“‘cat’s-eye”’ vortex for this parameterization with N = 128 is
1077 If this boundary error is due to aliasing errors in the
representation, then the relative error in the derivatives of the
boundary should be approximately N times this or 107°, The
normal vector in (58) is calculated by taking a derivative of
the boundary, and hence we would expect the relative error in
the right-hand side of (58} (from which we calculate ¥{y}) to
be of order 1073, Because the zonal velocity is order 10, the
fact that its absolute error is 10~ is consistent with our argument
that its relative error should be 107%

8. CONCLUSION

The study of the detailed dynamics of inviscid vortices is
a fundamentally difficult problem that no one computational
method or theoretical technique can resolve. In this paper we
have developed basic numerical techniques for studying the
dynamics of piece-wise constant distributions of potential vor-
ticity in two dimensions. For a variety of analytic test cases,
we have demonstrated the superior performance of spectral
methods over finite-difference methods. The improvement is
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due to the exponential convergence of spectral methods in both
the representation of the boundary and the quadrature of the
contour integral. We have applied these methods to a Newton
continuation method that calculates stable and unstable, steady,
uniformly translating, and rotating solutions as well as their
linear eigenmodes. We use this method to find bifurcation
branches and their limiting solutions [19, 20].

Our initial-value methods often work very well for studying
the dynamics of potential vortices of strength Ag embedded in
zonal flows v that have the same sign shear as Aqg and for flows
with finite Rossby deformation radius L,. (Our motivation for
developing the methods in this paper was to study planetary
vortices embedded in zonal flows [18].) The presence of v or
finite L, often inhibits the formation of filaments. Typically in
these flows the CD methods do not break down and spectral
methods require an order of magnitude fewer points than finite-
difference methods to obtain the same accuracy. Spectral meth-
ods also work very well for flows that form one or two large-
scale tails that are advected by v to infinity but do not produce
small-scale filaments. The idea behind the use of a spectral
method for these vortices is that with the exception of the tail
tips the contours are regular and therefore a high-order (spectral)
method should be used to compute the flow except at the
tips. At the tips far from the main bodies of the vortices,
discontinuities (removals of §) are introduced in a physically
motivated way to mimic the dissipation left out of the quasi-
geostrophic equation (1), but the spectral method is never used
to try to capture the discontinuity. (This is analogous to the
computation of shocks in Eulers equation: A high-order method
can be used with shock fitting, but shock capturing generally
works best with a low-order method.)

For potential vortices that form small-scale filaments or large-
scale tails that are not advected to infinity, accuracy is lost
when the thickness of the filaments or tails is order 1/, Because
the filaments thin out exponentially fast, a spectral method’s
factor of 10 in increased accuracy is not that large an advantage
for these flows, and all CD methods fail within a few e-folding
times after the filaments form. Attempts to save CD algorithms
by modeling physical dissipation with contour surgery [9] or
smoothing are controversial, especially when the amount of
potential vorticity in the excised filaments becomes large. It is
not obvious that contour surgery of filaments or tails close to
the main bodies of the vortices mimics viscosity, nor has it
been established how sensitive the late-time behavior of the
vortices 15 {o this mock dissipation; i.e., it has not been proved
that the late-time solutions computed with dissipative CD algo-
rithms converge to those of the Navier—Stokes equation in the
inviscid limit. For example, two-dimensional turbulence and
molecular viscosity diffuse potential vorticity and momenta
while conserving their integrals, whereas the removal of fila-
ments changes the values of the integrais. Thus solutions of
this class of flows have not been discussed here. However, we
note that there are many initial-value problems of astrophysical
and geophysical interest that do not have these problems and
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that can be computed with CD methods without controversy
[18]. For these flows spectral methods appear to be more effi-
cient than finite differences. Moreover, for steady-state, uni-
formly translating, or rotating solutions found with the Newton
method, filamentation does not occur, and spectral CD methods
are very practical.

Finally we note that our spectral method (although more
accurate} requires no more storage or computational effort than
finite-difference methods with the same number of points N.
Therefore the same techniques that have been used to accelerate
finite-difference CD methods from N to N In (N) operation
per time step {e.g., the use of grids, multipole approximations,
etc.) can also be used with these spectral methods.

This work was supported in part by DARPA/NSF Grant
DMS-8919074 and NSF Grant CTS-89-06343. Calculations
were done at the San Diego Supercomputer Center. We thank
Tom Humphreys for help in the computations.

APPENDIX A: CONSTRAINTS FOR STEADILY
ROTATING VORTICES

In this appendix we outline the constraints needed to make
our Newton method well posed for computing the boundary
contours of steadily rotating potential vortices when ¥ is of the
form ¥ = v(r)f. We remind the reader that for zonal flows of
the form v = v())X, three constraints are needed to specify
uniquely each discrete branch of solutions. The three constraints
correspond to the conservation of circulation or area and the
initial choice of the center of vorticity (x;, o). For v = 0(r)é
there are five constraints, and they correspond to the conserva-
tion of circulation or area, the requirement that (x;, ¥} = (0,
0), the conservation of angular momentum or [ r’g'dA, and
the choice of the initial angular phase of the non-axisymmetric
rotating potential vortex. These constraints can be writlen as
(47)—(49) and (for an m-fold symmetric vortex with m # 0}

Fryua= % [RA(TH cos[m&(D)ds — D =10 (60)

and

Fuys = jg [R™(7)] sin[mé(T}dT= 0, 6l

where RA(7) = (1) + yX7) and ds = [(dx/d7y + (dv/d7)']"
d7. Equations (607 and (61} are not the most transparent form
of expressing the two new constraints but are computationally
the easiest to work with. The angular phase is specified by the
choice of D.
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The velocity must now have five unknown parameters:
v(X) = ¥(x) + V' (X} + [Vysy = Vyax — Viay

+ VyrsR™ ' cos(mB)R + [Vies + Viay  (62)

+ Vipax — ViR U sin(mé)] ¥,

where Vy.i, Vy.s, and Vyg; have the same effect here as they
do in Eq. (50), where V., is a uniform rotation that changes
the angular phase of the vortex and where Vs is an m-fold
symimetric strain that changes its angular momentum. The New-
ton-solver finds the values of V. and Vi, required to make

the vortex steady. (For V., this value is generally zero.)
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